14.1 / OVERVIEW 501

—

¢ A superscalar processor is one in which multiple independent instruc-
tion pipelines are used. Each pipeline consists of multiple stages, so
that each pipeline can handle multiple instructions at a time. Multiple
pipelines introduce a new lével of parallelism, enabling multiple
streams of instructions to be processed at a time. A superscalar proces-

sor exploits what is known as instruction-level parallelism, which refers

to the degree to which the instructions of a program can be executed in

 parallel. | PR D P

¢ A superscalar processor typically fetches multiple instructions at a time
and then attempts to find nearby instructions that are independent of one
another and can therefore be executed in parallel. If the input to one in-
struction depends on the output of a preceding instruction, then the latter
instruction cannot complete execution at the same time or before the for-
mer instruction. Once such dependencies have been identified, the
processor may issue and complete instructions in an order that differs
from that of the original machine code. o S ‘

¢ The processor may eliminate some unnecessary dependencies by the use
of additional registers and the renaming of register references in the orig-

inalcode. St O

¢ Whereas pure RISC processors often employ delayed branches to maximize
- theutilization of the instruction pipetine; this method is less appropriate to a
superscalar machine. Instead, most superscalar machines use traditional

branch predictipn methods to mpmveefﬁcxegcy e

A superscalar implementation of a processor architecture is one in which common
instructions——integer and floating-point arithmetic, loads, stores, and conditional
branches—can be initiated simultaneously and executed independently. Such imple-
mentations raise a number of complex design issues related to the instruction pipeline.

Superscalar design arrived on the scene hard on the heels of RISC architecture.
Although the simplified instruction set architecture of a RISC machine lends itself
readily to superscalar techniques, the superscalar approach can be used on either a
RISC or CISC architecture.

Whereas the gestation period for the arrival of commercial RISC machines from
the beginning of true RISC research with the IBM 801 and the Berkeley RISC I was
seven or eight years, the first superscalar machines became commercially available with-
in just a year or two of the coining of the term superscalar. The superscalar approach has
now become the standard method for implementing high-performance MiCroprocessors.

In this chapter, we begin with an overview of the superscalar approach, contrast-
ing it with superpipelining. Next, we present the key design issues associated with
superscalar implementation. Then we look at several important examples of superscalar
architecture.

502 CHAPTER 14 / INSTRUCTION-LEVEL PARALLELISM

14.1 OVERVIEW

The term superscalar, first coined in 1987 [AGERS87], refers to a machine that is
designed to improve the performance of the execution of scalar instructions. In most
applications, the bulk of the operations are on scalar quantities. Accordingly, the
superscalar approach represents the next step in the evolution of high-performance
general-purpose processors.

The essence of the superscalar approach is the ability to execute instructions in-
dependently and concurrently in different pipelines. The concept can be further ex-
ploited by allowing instructions to be executed in an order different from the program
order. Figure 14.1 shows, in general terms, the superscalar approach. There are multiple
functional units, each of which is implemented as a pipeline, which support parallel ex-
ecution of several instructions. In this example, two integer, two floating-point, and one
memory (either load or store) operations can be executing at the same time.

Many researchers have investigated superscalar-like processors, and their
research indicates that some degree of performance improvement is possible.
Table 14.1 presents the reported performance advantages. The differences in the
results arise from differences both in the hardware of the simulated machine and
in the applications being simulated.

Integer register file Floating-point register file

Pipelined
functional
units

Memory
Figure 14.1 General Superscalar Organization [COME95]

Table 14.1 Reported Speedups
of Superscalar-Like Machines

14.1 / OVERVIEW 503

Superscalar versus Superpipelined

An alternative approach to achieving greater performance is referred to as super-
pipelining, a term first coined in 1988 [JOUPS88]. Superpipelining exploits the fact
that many pipeline stages perform tasks that require less than half a clock cycle.
Thus, a doubled internal clock speed allows the performance of two tasks in one
external clock cycle. We have seen one example of this approach with the MIPS
R4000.

Figure 14.2 compares the two approaches. The upper part of the diagram
illustrates an ordinary pipeline, used as a base for comparison. The base pipeline

Key: Execute
[t oot wre |
{ i | |
i] | 1 |
| I | i
> I] i |
. Simple 4-stage |
E | pipeline |
| |
I i | I
| 1 ” l
L sl !
.]
I I | |
o
A N T e A T R
£ B
E I]]] |
s] .
§ l i Su;perpip%lined |
[*]]
A I NI
| i I
: | .
| | | I |
| 1 1 1 |
i ! I [| I | | |
| | | | |] | i |
| |] 1 | !]] 1
] i | | | | | |]
| I | f I
| | i | |
[| | | |
| t 1 I 1
S A
I: Superscalar !
i | | |
i] |
I | |
1 1 ! |
| I | |
| | ! !
| | | |
| { | |
r : : \ ! ! ! ' ! !
0 1 2 3 4 5 6 7 8 9

Time in base cycles

Figure 14.2 Comparison of Superscalar and Superpipeline Approaches

504

CHAPTER 14 / INSTRUCTION-LEVEL PARALLELISM

issues one instruction per clock cycle and can perform one pipeline stage per clock
cycle. The pipeline has four stages: instruction fetch, operation decode, operation
execution, and result write back. The execution stage is crosshatched for clarity.
Note that although several instructions are executing concurrently, only one instruc-
tion is in its execution stage at any one time.

The next part of the diagram shows a superpipelined implementation that is
capable of performing two pipeline stages per clock cycle. An alternative way of
looking at this is that the functions performed in each stage can be split into two
nonoverlapping parts and each can execute in half a clock cycle. A superpipeline
implementation that behaves in this fashion is said to be of degree 2. Finally, the
lowest part of the diagram shows a superscalar implementation capable of execut-
ing two instances of each stage in parallel. Higher-degree superpipeline and super-
scalar implementations are of course possible.

Both the superpipeline and the superscalar implementations depicted in
Figure 14.2 have the same number of instructions executing at the same time in the
steady state. The superpipelined processor falls behind the superscalar processor at
the start of the program and at each branch target.

Limitations

The superscalar approach depends on the ability to execute multiple instructions in
parallel. The term instruction-level parallelism refers to the degree to which, on average,
the instructions of a program can be executed in parallel. A combination of compiler-
based optimization and hardware techniques can be used to maximize instruction-level
parallelism. Before examining the design techniques used in superscalar machines to
increase instruction-level parallelism, we need to look at the fundamental limitations
to parallelism with which the system must cope. [JOHNO91] lists five limitations:

¢ True data dependency
* Procedural dependency
* Resource conflicts

¢ Output dependency

¢ Antidependency

We examine the first three of these limitations in the remainder of this section. A
discussion of the last two must await some of the developments in the next section.

True Data Dependency Consider the following sequence:'

add rl, r2 ;load register rl with the contents
of r2 plus the contents of ril

move r3, rl ;load register r3 with the contents
of ri

The second instruction can be fetched and decoded but cannot execute until the
first instruction executes. The reason is that the second instruction needs data

'For the Intel 80x86 and Pentium assembly language, a comment is indicated by a semicolon. The semi-
colon and all characters following the semicolon on the same line are ignored by the assembler.

14.1 / OVERVIEW 505

Execute

Key:
| Ifetch | Decode B3B3 write |

I | I |
I ! 1 |
] | | | |
i0 : | ! | !
! iNo dependency i
il t | [l t |
| I | | I
i | | | | | i | i
| | | i | 1 ! | I
| 1 t | l | | { |
| | i | | ! { | |
I 1 | I |
i0 l : ; | |
. :Data dependency |
i1 :(il uses data clomputled by i0)
: : : : i | | 1 |
I | I i | I ! |]
{ 1 1 | | | | | |
! i | I i
i0 | : | | :
I i Procedural dependency
il/branch | ' | \ |
2 | ! i :
. ! ! | {
i3 : : :
id f | : l
i | | | :
I .
| ! | |
| | | | | i I | I
! I | | | i i | i
|] i | ! | i | |
| 1 | | 1 |
I ! | I !
i0 i l ' [)
. :Resource conflict !
i1 | :(i0 and il use the same
v ! [[! ! 'functional unit) !
0 1 2 3 4 5 6 7 8 i

Time in base cycles

Figure 14.3 Effect of Dependencies

produced by the first instruction. This situation is referred to as a true data depen-
dency (also called flow dependency or write-read dependency).

Figure 14.3 illustrates this dependency in a superscalar machine of degree 2. With
no dependency, two instructions can be fetched and executed in parallel. If there is a
data dependency between the first and second instructions, then the second instruction
is delayed as many clock cycles as required to remove the dependency. In general, any
instruction must be delayed until all of its input values have been produced.

In a simple pipeline, such as illustrated in the upper part of Figure 14.2, the
aforementioned sequence of instructions would cause no delay. However, consider
the following, in which one of the loads is from memory rather than from a register:

load 1rl, eff ;load register rl with the contents
of effective memory address eff

move r3, ril ;load register r3 with the contents
of rl

506 CHAPTER 14/ INSTRUCTION-LEVEL PARALLELISM

A typical RISC processor takes two or more cycles to perform a load from mem-
ory because of the delay of an off-chip memory or cache access. One way to compen-
sate for this delay is for the compiler to reorder instructions so that one or more
subsequent instructions that do not depend on the memory load can begin flowing
through the pipeline. This scheme is less effective in the case of a superscalar pipeline:
The independent instructions executed during the load are likely to be executed on the
first cycle of the load, leaving the processor with nothing to do until the load completes.

Procedural Dependencies As was discussed in Chapter 12, the presence of
branches in an instruction sequence complicates the pipeline operation. The instruc-
tions following a branch (taken or not taken) have a procedural dependency on the
branch and cannot be executed until the branch is executed. Figure 14.3 illustrates
the effect of a branch on a superscalar pipeline of degree 2.

As we. have seen, this type of procedural dependency also affects a scalar
pipeline. The consequence for a superscalar pipeline is more severe, because a
greater magnitude of opportunity is lost with each delay..

If variable-length instructions are used, then another sort of procedural
dependency arises. Because the length of any particular instruction is not known, it
must be at least partially decoded before the following instruction can be fetched.
This prevents the simultaneous fetching required in a superscalar pipeline. This is
one of the reasons that superscalar techniques are more readily applicable to a
RISC or RISC-like architecture, with its fixed instruction length.

Resource Contflict A resource conflict is a competition of two or more instruc-
tions for the same resource at the same time. Examples of resources include memo-
ries, caches, buses, register-file ports, and functional units (e.g., ALU adder).

In terms of the pipeline, a resource conflict exhibits similar behavior to a data
dependency (Figure 14.3). There are some differences, however. For one thing,
resource conflicts can be overcome by duplication of resources, whereas a true data
dependency cannot be eliminated. Also, when an operation takes a long time to
complete, resource conflicts can be minimized by pipelining the appropriate func-
tional unit.

14.2 DESIGN ISSUES

Instruction-Level Parallelistmn and Machine Parallelism

[JOUP89a] makes an important distinction between the two related concepts of
instruction-level parallelism and machine parallelism. Instruction-level parallelism
exists when instructions in a sequence are independent and thus can be executed in
parallel by overlapping.

As an example of the concept of instruction-level parallelism, consider the
following two code fragments [JOUP89b]:

Load Rl « R2 Add R3 ¢« R3, “1"
Add R3 « R3, “1” Add R4 « R3, R2
Add R4 « R4, R2 Store [R4] &« RO

14.2 / DESIGN ISSUES 507

The three instructions on the left are independent, and in theory all three could be
executed in parallel. In contrast, the three instructions on the right cannot be
executed in parallel because the second instruction uses the result of the first, and
the third instruction uses the result of the second.

The degree of instruction-level parallelism is determined by the frequency of
true data dependencies and procedural dependencies in the code. These factors, in
turn, are dependent on the instruction set architecture and on the application.
Instruction-level parallelism is also determined by what [JOUP89a] refers to as
operation latency: the time until the result of an instruction is available for use as an
operand in a subsequent instruction. The latency determines how much of a delay a
data or procedural dependency will cause.

Machine parallelism is a measure of the ability of the processor to take advan-
tage of instruction-level parallelism. Machine parallelism is determined by the num-
ber of instructions that can be fetched and executed at the same time (the number
of parallel pipelines) and by the speed and sophistication of the mechanisms that
the processor uses to find independent instructions.

Both instruction-level and machine parallelism are important factors in
enhancing performance. A program may not have enough instruction-level paral-
lelism to take full advantage of machine parallelism. The use of a fixed-length
instruction set architecture, as in a RISC, enhances instruction-level parallelism. On
the other hand, limited machine parallelism will limit performance no matter what
the nature of the program.

Instruction Issue Policy

As was mentioned, machine parallelism is not simply a matter of having multiple
instances of each pipeline stage. The processor must also be able to identify instruction-
level parallelism and orchestrate the fetching, decoding, and execution of instructions
in parallel. [JOHNY1] uses the term instruction issue to refer to the process of initiating
instruction execution in the processor’s functional units and the term instruction issue
policy to refer to the protocol used to issue instructions, In general, we can say that
instruction issue occurs when instruction moves from the decode stage of the pipeline
to the first execute stage of the pipeline.

In essence, the processor is trying to look ahead of the current point of execu-
tion to locate instructions that can be brought into the pipeline and executed. Three
types of orderings are important in this regard:

* The order in which instructions are fetched
* The order in which instructions are executed

* The order in which instructions update the contents of register and
memory locations

The more sophisticated the processor, the less it is bound by a strict relation-
ship between these orderings. To optimize utilization of the various pipeline
elements, the processor will need to alter one or more of these orderings with
respect to the ordering to be found in a strict sequential execution. The one con-
straint on the processor is that the result must be correct. Thus, the processor must
accommodate the various dependencies and conflicts discussed earlier.

508 CHAPTER 14 / INSTRUCTION-LEVEL PARALLELISM

In general terms, we can group superscalar instruction issue policies into the
following categories:

e In-order issue with in-order completion
e In-order issue with out-of-order completion
¢ Qut-of-order issue with out-of-order completion

In-Order Issue with In-Order Completion The simplest instruction issue
policy is to issue instructions in the exact order that would be achieved by sequential
execution (in-order issue) and to write results in that same order (in-order comple-
tion). Not even scalar pipelines follow such a simple-minded policy. However, itis use-
ful to consider this policy as a baseline for comparing more sophisticated approaches.

Figure 14.4a gives an example of this policy. We assume a superscalar pipeline
capable of fetching and decoding two instructions at a time, having three separate
functional units (e.g., two integer arithmetic and one floating-point arithmetic), and
having two instances of the write-back pipeline stage. The example assumes the
following constraints on a six-instruction code fragment:

I1 requires two cycles to execute.

13 and 14 conflict for the same functional unit.

IS depends on the value produced by I4.

15 and 16 conflict for a functional unit.

Instructions are fetched two at a time and passed to the decode unit. Because
instructions are fetched in pairs, the next two instructions must wait until the pair of
decode pipeline stages has cleared. To guarantee in-order completion, when there is
a conflict for a functional unit or when a functional unit requires more than one
cycle to generate a result, the issuing of instructions temporarily stalls.

In this example, the elapsed time from decoding the first instruction to writing
the last results is eight cycles.

In-Order Issue with Out-of-Order Completion Out-of-order completion
is used in scalar RISC processors to improve the performance of instructions that
require multiple cycles. Figure 14.4b illustrates its use on a superscalar processor.
Instruction 12 is allowed to run to completion prior to I1. This allows I3 to be com-
pleted earlier, with the net result of a savings of one cycle.

With out-of-order completion, any number of instructions may be in the exe-.
cution stage at any one time, up to the maximum degree of machine parallelism
across all functional units. Instruction issuing is stalled by a resource conflict, a data
dependency, or a procedural dependency.

In addition to the aforementioned limitations, a new dependency, which we
referred to earlier as an output dependency (also called write-write dependency), arises.
The following code fragment illustrates this dependency (op represents any operation):

I1l: R3 « R3 op RS
I2: R4 « R3 + 1
I3: R3 « R5 + 1
I4: R7 « R3 op R4

14.2 / DESIGN ISSUES 509

Decode Execute Write Cycle
11 12 s 1
K] 14 I 12 2
13 14 11 _ ; 3

14 13 11| 2 4

IS I6 14 5
I6 15 3| K4 6

16 ' 7

IS | I6 8

(a) In-order issue and in-order completion

Decode Execute Write Cycle
11 12 ~ : 1
13 14 I1 2 2

14 11 3 2 3

15 16 14 11{13 4
16 IS5 14 5

| 16 1I5 6

I6 7

(b) In-order issue and out-of-order completion

Decode Window Execute Write Cycle
I1 12 1
I3 | 14 11, 12 11 2 ‘ ' 2
15 | 16 13,14 11 3 2 3

14, I5, I6 16 M | |3 4
I5 IS5 14 1 16 5
I 6

(c) Out-of-order issue and out-of-order completion
Figure 14.4 Superscalar Instruction Issue and Completion Policies

Instruction 12 cannot execute before instruction I1, because it needs the result in
register R3 produced in I1; this is an example of a true data dependency, as described
in Section 14.1. Similarly, I4 must wait for I3, because it uses a result produced by I3.
What about the relationship between I1 and I3? There is no data dependency here, as
we have defined it. However, if I3 executes to completion prior to I1, then the wrong
value of the contents of R3 will be fetched for the execution of I4. Consequently, 13
must complete after I1 to produce the correct output values. To ensure this, the issuing
of the third instruction must be stalled if its result might later be overwritten by an
older instruction that takes longer to complete.

510 CHAPTER 14 / INSTRUCTION-LEVEL PARALLELISM

Out-of-order completion requires more complex instruction issue logic than
in-order completion. In addition, it is more difficult to deal with instruction inter-
rupts and exceptions. When an interrupt occurs, instruction execution at the current
point is suspended, to be resumed later. The processor must assure that the resump-
tion takes into account that, at the time of interruption, instructions ahead of the
instruction that caused the intérrupt may already have completed.

Out-of-Order Issue with Qut-of-Order Completion With in-order issue,
the processor will only decode instructions up to the point of a dependency or con-
flict. No additional instructions are decoded until the conflict is resolved. As a result,
the processor cannot look ahead of the point of conflict to subsequent instructions
that may be independent of those already in the pipeline and that may be usefully
introduced into the pipeline.

To allow out-of-order issue, it is necessary to decouple the decode and execute
stages of the pipeline. This is done with a buffer referred to as an instruction window.
With this organization, after a processor has finished decoding an instruction, it is
placed in the instruction window. As long as this buffer is not full, the processor can con-
tinue to fetch and decode new instructions. When a functional unit becomes available in
the execute stage, an instruction from the instruction window may be issued to the exe-
cute stage. Any instruction may be issued, provided that (1) it needs the particular func-
tional unit that is available and (2) no conflicts or dependencies block this instruction.

The result of this organization is that the processor has a lookahead capability,
allowing it to identify independent instructions that can be brought into the execute
stage. Instructions are issued from the instruction window with little regard for their
original program order. As before, the only constraint is that the program execution
behaves correctly.

Figures 14.4c illustrates this policy. During each of the first three cycles, two
instructions are fetched into the decode stage. During each cycle, subject to the con-
straint of the buffer size, two instructions move from the decode stage to the instruction
window. In this example, it is possible to issue instruction I6 ahead of IS (recall that
I5 depends on I4, but 16 does not). Thus, one cycle is saved in both the execute and
write-back stages, and the end-to-end savings, compared with Figure 14.4b, is one cycle.

The instruction window is depicted in Figure 14.4c to illustrate its role. How-
ever, this window is not an additional pipeline stage. An instruction being in the
window simply implies that the processor has sufficient information about that in-
struction to decide when it can be issued.

The out-of-order issue, out-of-order completion policy is subject to the same con-
straints described earlier. An instruction cannot be issued if it violates a dependency or
conflict. The difference is that more instructions are available for issuing, reducing the
probability that a pipeline stage will have to stall. In addition, a new dependency, which
we referred to earlier as an antidependency (also called read-write dependency), arises.
The code fragment considered earlier illustrates this dependency:

Il: R3 « R3 op RS
I2: R4 « R3 + 1
I3: R3 « R5 + 1
I4: R7 « R3 op R4

14.2 / DESIGN ISSUES 511

Instruction I3 cannot complete execution before instruction 12 begins execu-
tion and has fetched its operands. This is so because I3 updates register R3, which is
a source operand for 12. The term antidependency is used because the constraint is
similar to that of a true data dependency, but reversed: Instead of the first instruc-
tion producing a value that the second instruction uses, the second instruction
destroys a value that the first instruction uses.

Register Renaming

When out-of-order instruction issuing and/or out-of-order instruction completion
are allowed, we have seen that this gives rise to the possibility of output dependen-
cies and antidependencies. These dependencies differ from true data dependencies
and resource conflicts, which reflect the flow of data through a program and the
sequence of execution. Output dependencies and antidependencies, on the other
hand, arise because the values in registers may no longer reflect the sequence of
values dictated by the program flow.

When instructions are issued in sequence and complete in sequence, it is
possible to specify the contents of each register at each point in the execution.
When out-of-order techniques are used, the values in registers cannot be fully
known at each point in time just from a consideration of the sequence of instruc-
tions dictated by the program. In effect, values are in conflict for the use of regis-
ters, and the processor must resolve those conflicts by occasionally stalling a
pipeline stage.

Antidependencies and output dependencies are both examples of storage con-
flicts. Multiple instructions are competing for the use of the same register locations,
generating pipeline constraints that retard performance. The problem is made more
acute when register optimization techniques are used (as discussed in Chapter 13),
because these compiler techniques attempt to maximize the use of registers, hence
maximizing the number of storage conflicts.

One method for coping with these types of storage conflicts is based on a tradi-
tional resource-conflict solution: duplication of resources. In this context, the
technique is referred to as register renaming. In essence, registers are allocated
dynamically by the processor hardware, and they are associated with the values
needed by instructions at various points in time. When a new register value is created
(i.e., when an instruction executes that has a register as a destination operand), a new
register is allocated for that value. Subsequent instructions that access that value as a
source operand in that register must go through a renaming process: the register
references in those instructions must be revised to refer to the register containing the
needed value. Thus, the same original register reference in several different instruc-
tions may refer to different actual registers, if different values are intended.

Let us consider how register renaming could be used on the code fragment we
have been examining:

I1: R3, « R3, op RS,
I2: R4y ¢« R3, + 1
I3: R3, & R5, + 1
I4: R7, & R3, op R4,

512 CHAPTER 14 / INSTRUCTION-LEVEL PARALLELISM

The register reference without the subscript refers to the logical register refer-
ence found in the instruction. The register reference with the subscript refers to a
hardware register allocated to hold a new value. When a new allocation is made for
a particular logical register, subsequent instruction references to that logical register
as a source operand are made to refer to the most recently allocated hardware
register (recent in terms of the program sequence of instructions).

In this example, the creation of register R3, in instruction I3 avoids the antide-
pendency on the second instruction and the output dependency on the first instruc-
tion, and it does not interfere with the correct value being accessed by I4. The result
is that I3 can be issued immediately; without renaming, I3 cannot be issued until the
first instruction is complete and the second instruction is issued.

Machine Parallelism

In the preceding, we have looked at three hardware techniques that can be used in a
superscalar processor to enhance performance: duplication of resources, out-of-order
issue, and renaming. One study that illuminates the relationship among these tech-
niques was reported in [SMIT89]. The study made use of a simulation that modeled a
machine with the characteristics of the MIPS R2000, augmented with various super-
scalar features. A number of different program sequences were simulated.

Figure 14.5 shows the results. In each of the graphs, the vertical axis corresponds
to the mean speedup of the superscalar machine over the scalar machine. The hori-
zontal axis shows the results for four alternative processor organizations. The base

8 16 32

Window size
(construction) - - l:l

Without renaming With renaming
Speedup Speedup
4 4 N
3 3 - —
2 - 2 —
1 . 1 -
0 0
base +1d/st +alu +both base +1d/st +alu +both

Figure 14.5 Speedups of Various Machine Organizations Without Procedural Dependencies

14.2 / DESIGN ISSUES 513

machine does not duplicate any of the functional units, but it can issue instructions out
of order. The second configuration duplicates the load/store functional unit that
accesses a data cache. The third configuration duplicates the ALU, and the fourth con-
figuration duplicates both load/store and ALU. In each graph, results are shown for
instruction window sizes of 8, 16, and 32 instructions, which dictates the amount of
lookahead the processor can do. The difference between the two graphs is that, in the
second, register renaming is allowed. This is equivalent to saying that the first graph
reflects a machine that is limited by all dependencies, whereas the second graph
corresponds to a machine that is limited only by true dependencies.

The two graphs, combined, yield some important conclusions. The first is that it
is probably not worthwhile to add functional units without register renaming. There
is some slight improvement in performance, but at the cost of increased hardware
complexity. With register renaming, which eliminates antidependencies and output
dependencies, noticeable gains are achieved by adding more functional units. Note,
however, that there is a significant difference in the amount of gain achievable
between using an instruction window of 8 versus a larger instruction window. This
indicates that if the instruction window is too small, data dependencies will prevent
effective utilization of the extra functional units; the processor must be able to look
quite far ahead to find independent instructions to utilize the hardware more fully.

Branch Prediction

Any high-performance pipelined machine must address the issue of dealing with
branches. For example, the Intel 80486 addressed the problem by fetching both the
next sequential instruction after a branch and speculatively fetching the branch tar-
get instruction. However, because there are two pipeline stages between prefetch
and execution, this strategy incurs a two-cycle delay when the branch gets taken.

With the advent of RISC machines, the delayed branch strategy was explored.
This allows the processor to calculate the result of conditional branch instructions
before any unusable instructions have been prefetched. With this method, the proces-
sor always executes the single instruction that immediately follows the branch. This
keeps the pipeline full while the processor fetches a new instruction stream.

With the development of superscalar machines, the delayed branch strategy has
less appeal. The reason is that multiple instructions need to execute in the delay slot,
raising several problems relating to instruction dependencies. Thus, superscalar
machines have returned to pre-RISC techniques of branch prediction. Some, like the
PowerPC 601, use a simple static branch prediction technique. More sophisticated
processors, such as the PowerPC 620 and the Pentium 4, use dynamic branch
prediction based on branch history analysis.

Superscalar Execution

We are now in a position to provide an overview of superscalar execution of
programs; this is illustrated in Figure 14.6. The program to be executed consists of a
linear sequence of instructions. This is the static program as written by the program-
mer or generated by the compiler. The instruction fetch process, which includes
branch prediction, is used to form a dynamic stream of instructions. This stream is
examined for dependencies, and the processor may remove artificial dependencies.

514 CHAPTER 14 / INSTRUCTION-LEVEL PARALLELISM

Instruction Instruction
dispatch issue
Instruction fetch P—————— = -
and branch | | Instruction Instruction
Static prediction i execution reorder and
program | commit
—_— |
] [
> —
|
|
. |
|
I
1 |
Lo e e~ o d
Window of
execution

Figure 14.6 Conceptual Depiction of Superscalar Processing [SMIT95]

The processor then dispatches the instructions into a window of execution. In this
window, instructions no longer form a sequential stream but are structured accord-
ing to their true data dependencies. The processor performs the execution stage of
each instruction in an order determined by the true data dependencies and hard-
ware resource availability. Finally, instructions are conceptually put back into
sequential order and their results are recorded.

The final step mentioned in the preceding paragraph is referred to as committing,
or retiring, the instruction. This step is needed for the following reason. Because of the
use of parallel, multiple pipelines, instructions may complete in an order different from
that shown in the static program. Further, the use of branch prediction and speculative
execution means that some instructions may complete execution and then must be
abandoned because the branch they represent is not taken. Therefore, permanent stor-
age and program-visible registers cannot be updated immediately when instructions
complete execution. Results must be held in some sort of temporary storage that is
usable by dependent instructions and then made permanent when it is determined that
the sequential model would have executed the instruction.

Superscalar Implementation

Based on our discussion so far, we can make some general comments about the
processor hardware required for the superscalar approach. [SMIT95] lists the
following key elements:

¢ Instruction fetch strategies that simultaneously fetch multiple instructions,
often by predicting the outcomes of, and fetching beyond, conditional branch
instructions. These functions require the use of multiple pipeline fetch and
decode stages, and branch prediction logic.

* Logic for determining true dependencies involving register values, and mecha-
nisms for communicating these values to where they are needed during execution.

14.3 / PENTIUM 4 515

* Mechanisms for initiating, or issuing, multiple instructions in parallel.

* Resources for parallel execution of multiple instructions, including multiple
pipelined functional units and memory hierarchies capable of simultaneously
servicing multiple memory references.

* Mechanisms for committing the process state in correct order.

Although the concept of superscalar design is generally associated with the RISC
architecture, the same superscalar principles can be applied to a CISC machine.
Perhaps the most notable example of this is the Pentium. The evolution of super-
scalar concepts in the Intel line is interesting to note. The 80486 was a straightfor-
ward traditional CISC machine, with no superscalar elements. The original Pentium
had a modest superscalar component, consisting of the use of two separate integer
execution units. The Pentium Pro introduced a full-blown superscalar design. Subse-
quent Pentium models have refined and enhanced the superscalar design.

A general block diagram of the Pentium 4 was shown in Figure 4.13. Figure 14.7
depicts the same structure in a way more suitable for the pipeline discussion in this
section. The operation of the Pentium 4 can be summarized as follows:

3
-

!
1

3.2 GB/s System interface
-
Integer register flle
1
Yy
&l =l @
i g
[_Clug E ké a3 Iy

117y

BTB & I-TLB
Fetch/decode
Trace cache
Rename/alloc
v

nop Quenes
\ 4
=
(=
L1 D-Cache and D-TLB

Y
FP Register file
1
=
g
¥

3
\ 4
e]
&

ueode | | 1 MMX
ROM L |

AGU = address generation unit

BTB = branch target buffer

D-TLB = data translation lookaside buffer
I-TLB = instruction translation lookaside buffer

Figure 14.7 Pentium 4 Block Diagram

516 CHAPTER 14 / INSTRUCTION-LEVEL PARALLELISM

Figs |Br Ck| Drive

TC Next IP = trace cache next instruction pointer ~ Rename = register renaming RF = register file

TC Fetch = trace cache fetch Que = micro-op queuing Ex = execute
Alloc = allocate Sch = micro-op scheduling Flgs = flags
Disp = Dispatch Br Ck = branch check

Figure 14.8 Pentium 4 Pipeline

1. The processor fetches instructions from memory in the order of the static
program.

2. Each instruction is translated into one or more fixed-length RISC instructions,
known as micro-operations, or micro-ops.

3. The processor executes the micro-ops on a superscalar pipeline organization, so
that the micro-ops may be executed out of order.

4. The processor commits the results of each micro-op execution to the proces-
sor’s register set in the order of the original program flow.

In effect, the Pentium 4 architecture consists of an outer CISC shell with an
inner RISC core. The inner RISC micro-ops pass through a pipeline with at least
20 stages (Figure 14.8); in some cases, the micro-op requires. multiple execution
stages, resulting in an even longer pipeline. This contrasts with the five-stage
pipeline (Figure 12.19) used on the Intel x86 processors and on the Pentium.

We now trace to operation of the Pentium 4 pipeline, using Figure 14.9 to
illustrate its operation.

Front End

Generation of Micro-Ops The Pentium 4 organization includes an in-order
front end (Figure 14.9a) that can be considered outside the scope of the pipeline
depicted in Figure 14.8. This front end feeds into an L1 instruction cache, called the
trace cache, which is where the pipeline proper begins. Usually, the processor oper-
ates from the trace cache; when a trace cache miss occurs, the in-order front end
feeds new instructions into the trace cache.

With the aid of the branch target buffer and the instruction lookaside buffer
(BTB & I-TLB), the fetch/decode unit fetches Pentium 4 machine instructions from
the L2 cache 64 bytes at a time. As a default, instructions are fetched sequentially, so
that each L2 cache line fetch includes the next instruction to be fetched. Branch
prediction via the BTB & I-TLB unit may alter this sequential fetch operation. The
ITLB translates the linear instruction pointer address given it into physical address-
es needed to access the L2 cache. Static branch prediction in the front-end BTB is
used to determine which instructions to fetch next.

Once instructions are fetched, the fetch/decode unit scans the bytes to deter-
mine instruction boundaries; this is a necessary operation because of the variable
length of Pentium instructions. The decoder translates each machine instruction into
from one to four micro-ops, each of which is a 118-bit RISC instruction. Note for
comparison that most pure RISC machines have an instruction length of just 32 bits.

14.3 / PENTIUM 4 517

L2 Cache and control

L2 Cache and control

4'LL-d Pue 3gde)-(']

]

JY 193aug

4 P 1T T ¥ i

[SII[npAPS

r 8:0:»0 do g

t

[dornepureuay]

BTB

Y ayoed dea]

. t
h apodap/yray f‘_
t

A-Iv_ ILI® 419

ROM

H'LL-d pue 3gae)-(1]

_ SINPIYOS

r m@:u..HO dorl J

*’ Jo[epwendy |

Ayded 3dBA],

t
[aposeppeg]
i

BTB

| [#1-Ivald |

(b) Trace cache next instruction pointer

(a) Generation of micro-ops

L2 Cache and control

L2 Cache and control

4'1L-d pue 3yde)-(1]

]

AN 1333yuy

¥

L I t

L

SI3[Npaydg

BTB

0]je/aureusy

yIed 3ovyy,

t
[apoxpapreg |

T1LI® 919

(d) Drive

(c) Trace cache fetch

41L-aPUeapey-qr1 |

1t 13 ¥ t

SIANpoYRg

L2 Cache and control

[

_. do[[eduIBUdy

3yoed adeay,

i

~ 3podap/yIa] J

1L 1 ® 919

q1L-QPUeaped-a 11 |

A T TP T)

L

SI3|Npaydg

L2 Cache and control

BTB

o[spEEEY

ayded adea],

3podIPYNI

I

LAII_ 9101 % 919 _

(f) Micro-op queuing

(e) Allocate; Register renaming

igure 149 Pentium Pipeline Operation

F

mplex Pentium

Ops are easier to manage than the original

The longer micro-op length is required to accommodate the more co

the micro-

instructions from which they derive.

operations. Nevertheless,

The generated micro-ops are stored in the trace cache.

LEVEL PARALLELISM

INSTRUCTION

518 CHAPTER 14 /

L2 Cache and control

1L PUEIPED-ATT |

i@%ﬂw@ i
%_ sus.: %_ d1 |
_ w..u:.vo._om t |

JojjePWIRUIY

ayoed k1],

BTB

3podapPIg

L2 Cache and control

1L 1 ® 919

1L-d PUeaped-a 11 |

{Wﬂa o.“{.lr _H,”wa_._h»]
P 1111 ¢ i
L cs.w_!.om J
[8:2.»0 dord]
[oomepureuay _

AYIB dBA],

i

[epodprprd |

B
i

—{ gi1wdid |

(h) Dispatch

(g) Micro-op scheduling

L2 Cache and control

L2 Cache and control

1L-d pueoapsd-aI1 |

t,_ @@i W

Xy 13 3.._ ds |
» t 1 ¢1 » t
SIRMPIYIS |
t

_ sanang) dor]

t

[oonepweuay _

ayoed 38y,

t

[opodpmprg |

BTB

t
l— guivald |
q1L-apusaped-ar1 |

| Ghom] i

ﬁ F 1§ ¢ ¢ 1
S1IMPaYdS]
1

_ sananQ) dor _

t

[oonepueuay |

le-| Fop

Y8 VAL,

i

2podap/Iag

BTB

1L 1% 419

(j) Execute; flags

le

(i) Register fi

L2 Cache and control

L2 Cache and control

\—rIA A'1L-a Pue 3yE)-q I'1
e

471L-a pue aye)-q 1’1

T 133a3uy

BN t t

[SIINP3IYOS

J0[[e/ouIeudy

-

ayoed 4],

mﬂ—.-— rd1Ld

BTB

]

[medau | [aydd |
1 1+ ¢t ¢ | S)
[SI[NPAYdS]
t
_ sanang) dor _
1
_ do[fepureudy |

1

[apodpmarg

t
111 7% dld

m agoed dRAY m

(1) Branch check result

(k) Branch check

Figure 14.9 Continued

Trace Cache Next Instruction Pointer The first two pipeline stages (Figure

14.9b) deal with the selection of instructions in the trace cache and involve a sepa-

rate branch prediction mechanism from that described in the previous section. The

Pentium 4 uses a dynamic branch prediction strategy based on the history of recent

14.3 / PENTIUM 4 519

executions of branch instructions. A branch target buffer (BTB) is maintained that
caches information about recently encountered branch instructions. Whenever a
branch instruction is encountered in the instruction stream, the BTB is checked. If
an entry already exists in the BTB, then the instruction unit is guided by the history
information for that entry in determining whether to predict that the branch is
taken. If a branch is predicted, then the branch destination address associated with
this entry is used for prefetching the branch target instruction.

Once the instruction is executed, the history portion of the appropriate entry
is updated to reflect the result of the branch instruction. If this instruction is not rep-
resented in the BTB, then the address of this instruction is loaded into an entry in
the BTB; if necessary, an older entry is deleted.

The description of the preceding two paragraphs fits, in general terms, the
branch prediction strategy used on the original Pentium model, as well as the
later Pentium models, including Pentium 4. However, in the case of the Pentium,
a relatively simple 2-bit history scheme is used. The later Pentium models have
much longer pipelines (20 stages for the Pentium 4 compared with 5 stages for
the Pentium) and therefore the penalty for misprediction is greater. Accordingly,
the later Pentium models use a more elaborate branch prediction scheme with
more history bits to reduce the misprediction rate.

The Pentium 4 BTB is organized as a four-way set-associative cache with
512 lines. Each entry uses the address of the branch as a tag. The entry also includes
the branch destination address for the last time this branch was taken and a 4-bit
history field. Thus use of four history bits contrasts with the 2 bits used in the
original Pentium and used in most superscalar processors. With 4 bits, the Pentium 4
mechanism can take into account a longer history in predicting branches. The algo-
rithm that is used is referred to as Yeh’s algorithm [YEHO91]. The developers of this
algorithm have demonstrated that it provides a significant reduction in mispredic-
tion compared to algorithms that use only 2 bits of history [EVER98].

Conditional branches that do not have a history in the BTB are predicted
using a static prediction algorithm, according to the following rules:

* For branch addresses that are not IP relative, predict taken if the branch is a
return and not taken otherwise.

¢ For IP-relative backward conditional branches, predict taken. This rule reflects
the typical behavior of loops.

* For IP-relative forward conditional branches, predict not taken.

Trace Cache Fetch The trace cache (Figure 14.9c) takes the already-decoded
micro-ops from the instruction decoder and assembles them in to program-ordered
sequences of micro-ops called traces. Micro-ops are fetched sequentially from the
trace cache, subject to the branch prediction logic.

A few instructions require more than four micro-ops. These instructions are
transferred to microcode ROM, which contains the series of micro-ops (five or more)
associated with a complex machine instruction. For example, a string instruction may
translate into a very large (even hundreds), repetitive sequence of micro-ops. Thus,
the microcode ROM is a microprogrammed control unit in the sense discussed in
Part Four. After the microcode ROM finishes sequencing micro-ops for the current
Pentium instruction, fetching resumes from the trace cache.

520 CHAPTER 14 / INSTRUCTION-LEVEL PARALLELISM

Drive The fifth stage (Figure 14.9d) of the Pentium 4 pipeline delivers decoded
instructions from the trace cache to the rename/allocator module.

Out-of-Order Execution Logic

This part of the processor reorders micro-ops to allow them to execute as quickly as
their input operands are ready.

Allocate The allocate stage (Figure 14.9¢) allocates resources required for execu-
tion. It performs the following functions:

¢ If a needed resource, such as a register, is unavailable for one of the three micro-
ops arriving at the allocator during a clock cycle, the allocator stalls the pipeline.

¢ The allocator allocates a reorder buffer (ROB) entry, which tracks the com-
pletion status of one of the 126 micro-ops that could be in process at any time.

* The allocator allocates one of the 128 integer or floating-point register entries
for the result data value of the micro-op, and possibly a load or store buffer
used to track one of the 48 loads or 24 stores in the machine pipeline.

* The allocator allocates an entry in one of the two micro-op queues in front of
the instruction schedulers.

The ROB is a circular buffer that can hold up to 126 micro-ops and also con-
tains the 128 hardware registers. Each buffer entry consists of the following fields:

« State: Indicates whether this micro-op is scheduled for execution, has been dis-
patched for execution, or has completed execution and is ready for retirement.

¢ Memory Address: The address of the Pentium instruction that generated
the micro-op.

* Micro-op: The actual operation.

 Alias Register: If the micro-op references one of the 16 architectural registers,
this entry redirects that reference to one of the 128 hardware registers.

Micro-ops enter the ROB in order. Micro-ops are then dispatched from the
ROB to the Dispatch/Execute unit out of order. The criterion for dispatch is that the
appropriate execution unit and all necessary data items required for this micro-op
are available. Finally, micro-ops are retired from the ROB in order. To accomplish
in-order retirement, micro-ops are retired oldest first after each micro-op has been
designated as ready for retirement.

Register Renaming The rename stage (Figure 14.9¢) remaps references to the
16 architectural registers (8 floating-point registers, plus EAX, EBX, ECX, EDX,
ESI, EDI, EBP, and ESP) into a set of 128 physical registers. The stage removes false
dependencies caused by a limited number of architectural registers while preserving
the true data dependencies (reads after writes).

Micro-Op Queuing After resource allocation and register renaming, micro-ops
are placed in one of two micro-op queues (Figure 14.9f), where they are held
until there is room in the schedulers. One of the two queues is for memory opera-
tions (loads and stores) and the other for micro-ops that do not involve memory

14.4 / POWERPC 521

references. Each queue obeys a FIFO (first-in-first-out) discipline, but no order is
maintained between queues. That is, a micro-op may be read out of one queue out of
order with respect to micro-ops in the other queue. This provides greater flexibility
to the schedulers.

Micro-Op Scheduling and Dispatching The schedulers (Figure 14.9g)
are responsible for retrieving micro-ops from the micro-op queues and dispatch-
ing these for execution. Each scheduler looks for micro-ops in whose status indi-
cates that the micro-op has all of its operands. If the execution unit needed by that
micro-op is available, then the scheduler fetches the micro-op and dispatches it to
the appropriate execution unit (Figure 14.9h). Up to six micro-ops can be dis-
patched in one cycle. If more than one micro-op is available for a given execution
unit, then the scheduler dispatches them in sequence from the queue. This is a sort
of FIFO discipline that favors in-order execution, but by this time the instruction
stream has been so rearranged by dependencies and branches that it is substan-
tially out of order.

Four ports attach the schedulers to the execution units. Port 0 is used for both
integer and floating-point instructions, with the exception of simple integer opera-
tions and the handling of branch mispredictions, which are allocated to Port 1. In
addition, MMX execution units are allocated between these two ports. The remain-
ing ports are for memory loads and stores.

Integer and Floating-Point Execution Units

The integer and floating-point register files are the source for pending operations by
the execution units (Figure 14.91). The execution units retrieve values from the regis-
ter files as well as from the L1 data cache (Figure 14.9j). A separate pipeline stage is
used to compute flags (e.g., zero, negative); these are typically the input to a branch
instruction.

A subsequent pipeline stage performs branch checking (Figure 14.9k). This
function compares the actual branch result with the prediction. If a branch predic-
tion turns out to have been wrong, then there are micro-operations in various stages
of processing that must be removed from the pipeline. The proper branch destina-
tion is then provided to the Branch Predictor during a drive stage (Figure 14.91),
which restarts the whole pipeline from the new target address.

14.4 POWERPC

The PowerPC architecture is a direct descendant of the IBM 801, the RT PC, and
the RS/6000, the last also referred to as an implementation of the POWER architec-
ture. All of these are RISC machines, but the first in the series to exhibit superscalar
features was the RS/6000. The first implementation of the PowerPC architecture, the
601, has a superscalar design quite similar to that of the RS/6000. Subsequent
PowerPC models carry the superscalar concept further. In this section, we focus on
the 601, which provides a good example of a RISC-based superscalar design. At the
end of the section, we briefly consider the 620.

522 CHAPTER 14 / INSTRUCTION-LEVEL PARALLELISM

PowerPC 601

Figure 14.10 is a general view of the 601 organization. As with other superscalar
machines, the 601 is broken up into independent functional units to enhance oppor-
tunities for overlapped execution. In particular, the core of the 601 consists of three
independent pipelined execution units: integer, floating-point, and branch process-
ing. Together, these units can execute three instructions at a time, yielding a super-
scalar design of degree 3.

Figure 14.11 shows a logical view of the 601 architecture, emphasizing the flow
of instructions between functional units. The fetch unit can prefetch up to eight
instructions at a time from the cache. The cache unit supports a combined instruc-
tion/data cache and is responsible for feeding instructions to the other units and data
to the registers. Cache arbitration logic sends the address of the highest-priority
access to the cache.

Dispatch Unit The dispatch unit takes instructions from the cache and loads them
into the dispatch queue, which can hold eight instructions at a time. It processes this
stream of instructions to feed a steady flow of instructions to the branch processing,
integer, and floating-point units. The upper half of the queue simply acts as a buffer
to hold instructions until they move into the lower half. Its purpose is to ensure that
the dispatch unit is not delayed waiting for instructions from the cache. In the lower
half, instructions are dispatched according to the following scheme:

* Branch processing unit: Handles all branch instructions. The lowest such
instruction in the bottom half of the dispatch queue is issued to the branch
processing unit if that unit can accept it.

¢ Floating-point unit: Handles all floating-point instructions. The lowest such
instruction in the bottom half of the dispatch queue is issued to the floating-
point unit if the instruction pipeline in that unit is not full.

256 Bits

and dispatch

{ 256Bits }.

32 Bits

Branch
. Jnteger unit ““'f‘@..'{}’""" processing unit

32 Bits 64 Bits

Figure 14.10 PowerPC 601 Block Diagram

14.4 / POWERPC 523

EE————— Cycle boundary

LFetch arbitrati(rl

Fetch unit

L Unitboundary

~———— Instruction flow
——————> Completion tag flow

| - .

L Cache access

\

y

V‘wf . |

LCache arbitratim

Cache unit
! Integer
Instr buffer 3 | retry
Instr buffer 2] I
Instr buffer | L]
Instr buffer O Yy | Floating-point
Dispatch unit v store buffer
, Dispatch buffer 3 / l___
Branch
execute "'L Dispatch buffer2 y
] - Dispatch buffer | § 1 |
! Dispatch buffer 0
Mispredict Integer
recover decode

Integer
execute

Multiply

Add

Arithmetic

_—.‘ * write back
Y
| ¥ - Integer Integer
Branch Instruction arithmetic load . Load write
write back completion write back write back back
Branch processing unit Integer unit Floating-point unit

Figure 14.11 PowerPC 601 Pipeline Structure [POTT94]

* Integer unit: Handles integer instructions, load/stores between the register
files and the cache, and integer compare instructions. An integer instruction is
only issued after it has filtered to the bottom of the dispatch queue.

Allowing branch and floating-point instructions to be issued out of order from
the dispatch queue helps keep the instruction pipelines in the branch processing and

524

CHAPTER 14 / INSTRUCTION-LEVEL PARALLELISM

Branch
instructions

Integer

instructions

Load/store Dispa
instructions Fetch Dmtc:' Addr gen Cache Write back

Floating-point

instructions Fetch - Dispatch Decode Executel’ Execute2 | Write back

Figure 14.12 PowerPC 601 Pipeline

floating-point units full, and it moves instructions through the dispatch queue as
rapidly as possible.

The dispatch unit also contains logic that enables it to calculate the prefetch
address. It continues fetching instructions sequentially until a branch instruction
moves into the lower half of the dispatch queue. When the branch processing unit
processes an instruction, it may update the prefetch address so that succeeding
instructions are fetched from the new address and entered into the dispatch queue.

Instruction Pipelines Figure 14.12 illustrates the instruction pipelines for the
various units. There is a common fetch cycle for all instructions; this occurs
before an instruction is dispatched to a particular unit. The second cycle begins
with the dispatch of an instruction to a particular unit. This overlaps with
other activities within the unit. During each clock cycle, the dispatch unit consid-
ers the bottom four entries of the instruction queue and dispatches up to three
instructions.

For branch instructions, the second cycle involves decoding and executing
instructions as well as predicting branches. The last activity is discussed in the next
subsection.

The integer unit deals with instructions-that cause a load/store operation with
memory (including floating-point load/store), a register-register move, or an ALU
operation. In the case of a load/store, there is an address generation cycle followed
by sending the resulting address to the cache and, if necessary, a write-back cycle.
For other instructions, the cache is not involved and there is an execute cycle
followed by a write back to register.

Floating-point instructions follow a similar pipeline, but there are two execute
cycles, reflecting the complexity of floating-point operations.

14.4 / POWERPC 525

Several additional points are worth noting. The condition register contains
eight independent 4-bit condition code fields. This allows multiple condition codes
to be retained, which reduces the interlock or dependency between instructions. For
example, the compiler can transform the sequence

compare
branch
compare
branch

[]

[

L]
to the sequence

compare
compare
L]
[]

branch
branch
L]
[]

Because each functional unit can send its condition codes to different fields in
the condition register, interlocks between instructions caused by sharing of condi-
tion codes can be avoided.

The presence of the Save and Restore registers (SRRs) in the branch proces-
sor allows it to handle simple interrupts and software interrupts without involving
logic in the other functional units. Thus, simple operating system services can be per-
formed rapidly without complicated state manipulation or synchronization between
the functional units.

Because the 601 can issue branch and floating-point instructions out of order,
controls are needed to ensure proper execution. When a dependency exists
(i.e., when an instruction needs an operand that has yet to be computed by a previ-
ous instruction), the pipeline in the corresponding unit stalls.

Branch Processing

The key to the high performance of a RISC or superscalar machine is its ability to
optimize the use of the pipeline. Typically, the most critical element in the design is
how branches are handled. In the PowerPC, branch processing is the responsibility
of the branch unit. The unit is designed so that in many cases, branches have no
effect on the pace of execution in the other units; these type of branches are referred

526 CHAPTER 14 / INSTRUCTION-LEVEL PARALLELISM

to as zero-cycle branches. To achieve zero-cycle branching, the following strategies
are employed:

1. Logic is provided to scan through the dispatch buffer for branches. Branch tar-
get addresses are generated when a branch first appears in the lower half of
the queue and no prior branches are pending execution.

2. An attempt is made to determine the outcome of conditional branches. If the con-
dition code has been set sufficiently far in advance, this can be determined. In any
case, as soon as a branch instruction is encountered, logic determines if the branch:

a. Will be taken; this is the case for unconditional branches and for condi-
tional branches whose condition code is known and indicates a branch.

b. Will not be taken; this is the case for conditional branches whose condition
code is known and indicates no branch.

¢. Outcome cannot yet be determined. In this case, the branch is guessed to be
taken for backward branches (typical of loops) and guessed not to be taken
for forward branches. Sequential instructions past the branch instruction
are passed to the execution units in a conditional fashion. Once the condi-
tion code value is produced in the execution unit, the branch unit either
cancels the instructions in the pipeline and proceeds with the fetched target
if the branch is taken, or signals for the conditional instructions to be exe-
cuted. The compiler can use a single bit in the instruction coding to reverse
this default behavior.

The incorporation of a branch prediction strategy based on branch history was
rejected because the designers felt that a minimal payoff would be achieved.

As an example of the branch prediction effect, consider the program of Figure
14.13 and assume that the branch processor predicts that the conditional branch
instruction is not taken (the default case for a forward branch). Figure 14.14a shows
the effect on the pipeline if in fact the branch is not taken. In the first cycle, the
dispatch queue is loaded with eight instructions. The first six instructions are integer
instructions and are dispatched one per cycle to the integer unit. The conditional
branch instruction cannot be dispatched until it progresses to the lower half of the
dispatch queue, which happens in cycle 5. The branch unit predicts that this branch
will not be taken, and so the next instruction in sequence is conditionally dispatched
(indicated by a D’). The branch cannot be resolved until the compare instruction
executes in cycle 8. At that time, the branch processor confirms that its prediction was
correct, and execution continues. There are no delays, and the pipeline is kept full.

Note that no instructions are fetched during cycles 4 through 8. This is because
the cache is busy during those cycles with the cache access stage of the five load
instructions. Even so, the instruction stream is not delayed, because the dispatch
queue can hold eight instructions.

Figure 14.14b shows the result if the prediction is incorrect and the branch is
taken. In this case, the three instructions starting at the IF must be flushed, and
fetching resumes with instructions starting at ELSE. As a result, the execute stage of
the integer pipeline is idle for cycles 9 and 10, resulting in a two-cycle loss because of
the incorrect prediction.

14.4 / POWERPC

if (a > 0)
a=a+b+c+d+ e '
else .
a=a-b-c-d-e;
(a) C code
#rl points to a,
#rl+4 points to b,
#r1+8 points to ¢,
#r1+12 points to d,
#rl1+16 points to e.
lwz r8=a(rl) #load a
lwz r12=b(rl,4) #load b
lwz r9=c(ri1, 8) #load c¢
lwz r10=d(ri1,12) #load d
lwz rll=e(rl, 16) #load e
crpi cr0=r8,0 #compare immediate
bc ELSE,cr0/gt=false #branch if bit false
IF:
add rl2=r8,r12 #add
add rl2=rl2,xr9 #add
add r12=rl2,r10 #add
add r4=rl2,ri1 #add
stw .a(rl)=r4 #store
b ouT #unconditional branch
ELSE:)
subf rl2=rl2,r8 #subtract
subf rl2=r9,r12 #subtract
subf rl2=r10,ri12 #subtract
subf rd=r12,ri11 #subtract
. stw a(rl)=r4 #store
OUT:
(b) Assembly code

Figure 14.13 Code Example with Conditional Branch [WEIS94]

PowerPC 620

527

The 620 is the first 64-bit implementation of the PowerPC architecture. A notable
feature of this implementation is that it includes six independent execution units:

¢ Instruction unit
* Three integer units
* Load/store unit
* Floating-point unit

This organization enables the processor to dispatch up to four instructions simulta-
neously to the three integer units and one floating-point unit.

The 620 employs a high-performance branch prediction strategy that involves
prediction logic, register rename buffers, and reservation stations inside the execution
units. When an instruction is fetched, it is assigned a rename buffer to hold instruction
results temporarily, such as register stores. Because of the use of rename buffers, the
processor can speculatively execute instructions based on branch prediction; if the

528 CHAPTER 14 / INSTRUCTION-LEVEL PARALLELISM

. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
lwz r8=a(rh) F D E C W
lwz rl2=b(rl.,4) F D E C W
lwz r9=c(r1l,8) F D E C w
lwz 1r10=d(rl,12) F D E c W
lwz rll=e(ri,16) F D E C W
cmpi cr0=r8,0- F . D E
bc ELSE,cr0/gt=false F s
IF: add ri12=r8,rl2 F D' E W
‘add r12=rl2,r9 F D E 1%
add ri2=ri12,rl0 F ‘D E w
add rd4=rl12,rll F . D E W
stw al(rl)=r4 F . . D E o}

b ouT -
ELSE:subf rl12=r8,r12

subf r12=rl2,r9

subf rl12=r12,r10

subf r4=ri2,ril

stw a({rl)=r4
ouT:

(a) Correct prediction: Branch was not taken

N
w
o
~
o
0o

10 11 12 13 14 15 16
lwz r8=a(rl)

lwz rl2=b(rl,4)

lwz 1r9=c(rl,8)

lwz r10=d(ril,12)

lwz rll=e(ril,16)

cmpi cr0=r8,0

bc: ELSE,cr0/gt=false

o
omOe
ovmO=EwV

omAas=

LT B B B Bl B B B
Omaos=s
o]
=

IF: add rl12=r8,rl2 . .
add r12=r12,r9 F
add rl2=rl12,r1o0 F
add 1rdé=rl12,ril
stw a(rl)=r4
b outr

ELSE:subf rl12=r8,rl2
subf r12=rl2,r9
subf rl2=r12,r10
subf rd4=r12,rl1l
stw af{rl)=r4

OUT:

mom oo
)
3
=

(b) Incorrect prediction: Branch was taken

F = fetch C = cache access
D = dispatch/decode W = writeback
E = execute/address S = dispatch

Figure 14.14 Branch Prediction: Not Taken [WEIS94]

prediction turns out to be incorrect, then the results of the speculative instructions can
be flushed without damaging the register file. Once the outcome of a branch is con-
firmed, temporary results can be written out permanently.

Each unit has two or more reservation stations, which store dispatched instru-
ctions that must be held up for the results of other instructions. This feature clears
these instructions out of the instruction unit, enabling it to continue dispatching
instructions to other execution units.

14.5 / RECOMMENDED READING 529

The 620 can speculatively execute up to four unresolved branch instructions
(versus one for the 601). Branch prediction is based on the use of a branch history
table with 2048 entries. Simulations run by the PowerPC designers show that the
branch prediction success rate is 90% [THOMY4].

14.5 RECOMMENDED READING

Two good book-length treatments of superscalar design are [SHENO5] and [OMON99). Worth-
while survey articles on the subject are [SMIT95] and [SIMA97]. [JOUP89a] examines instruc-
tion-level parallelism, looks at various techniques for maximizing parallelism, and compares
superscalar and superpipelined approaches using simulation. Recent papers that provide good
coverage of superscalar design issues include [SIMA04], [PATTO1], and [MOSHO1].

[POPE91] provides a detailed look at a proposed superscalar machine. It also provides an
excellent tutorial on the design issues related to out-of-order instruction policies. Another look
ata proposed system is found in [KUGA91]; this article raises and considers most of the impor-
tant design issues for superscalar implementation. [LEE91] examines software techniques that
can be used to enhance superscalar performance. [WALL91] is an interesting study of the
extent to which instruction-level parallelism can be exploited in a superscalar processor.

Volume 1 of [INTE04] provides general description of the Pentium 4 pipeline; more
detail is provided in [INTEO1a] and [INTEO1b].

[POTT94] is a detailed examination of instruction pipelining on the PowerPC 601.
[SHANYS] also provides good coverage.

'HINT®1 Hinton, G, et al. “The Microarchitecture of the Pentium 4 Yocespor.”,
Technology Journal, Q1 2001. httpJ//developer.intel.com/technology/ity/ =
INTEO4 Intel Corp. 1A-32 Intel Architecture Software Developer’s Manual (4 vo
- Fentumd/documentationhtm, : o
| INTEOIa IntelComImlPenﬁum.4PromsorOpmzaﬁonReﬁrmMg
INTEO1b .Intel Corp. Desktop Perfo and Optimization for Intel.
| JOUP8%a Jouppi, N., and Wall, D. “Available Instraction-Level Pursll ;
.. apd Superpipelined Machines” Proceediri gs, Third International Ci :
" tectural Support for Programming Languages and Operating Systems, 989,
KUGA91 Kuga, M;; Murakami, K.; and Tomita, S. “DSNS (Dynamically-hazard
resolved, Statically-code-scheduled, Nonuniform Superscalar): Yet Another Super-
scalar Processor Architecture.” Computer Architecture News, June 1001, * 7" :
LEESL ‘Lee, R.; Kwok, A.; and Briggs, F. “The Floating Point Perfortisce! of'a Super- -
+ v rscaler SPARC Processor.” Proceedings, Fourth International Cosiférente on Archi-
tectural Support for Programming Languages and Operating Symtems, April 1991.
MOSHO1 Moshovos, A., and Sohi, G. “Microarchitectaral Innovations: Boostitig Micro-
processor Performance Beyond Semiconductor Technology Scaling.” Proceedings
of the IEEE, November 2001, R : T
OMON Omondi, A. The Microarchitecture of Pipelined and Supersealar Computers.
Boston: Kluwer, 1999, ' IR T N L ih

.zya

530 CHAPTER 14 / INSTRUCTION-LEVEL PARALLELISM

PATTO1 Patt, Y. “Requirements, Bottlenecks, and Good Fortune: Agents for Micro-
* processor Evolution.” Proceedings of the IEEE, November 2001.
POPE91 Popescy, V., et al. “The Metaflow Architecture.” IEEE Micro, June 1991.

POTT94 Potter, T, et al. “Resolutloh of Data and Control-Flow Dependencies in the
PowerPC 601.” IEEE kMzcro, October 1994,

jerPC Syxtzm Archaec:hre. Readmg, MA: Addxsou-WesleY,;,

s

1995,
SHENOS Shen, J,, and Lipasti, M. Modern Processor Design: Fundamentals of Super-

 scalar Processors. New York: McGraw-Hill, 2005.

SIMA97 Sima, D. “Superscalar Instruction Issuc ” IEEE Micro, September/October

.. 1997,

SIMAO4 Sima, D. “Decisive Aspects in the Evolution of Microprocessors.” Proceedmgs
;, of the IEEE, December 2004.

SMIT9S Smith; J, and Sohi, G. “The Mtcroarchuecture of Superscalar Processors.”

- Proceedings of the IEEE, December 1995.

WALL91 Wall, D. “Limits of Instniction-Level Parallehsm Proceedings, Fourth Inter-
national Conference on Architectural Support for Programmmg Languages and
* Operating Systems, April 1991.

14.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
antidependency machine parallelism register renaming
branch prediction micro-operations resource conflict
commit micro-ops retire
flow dependency out-of-order superpipelined
in-order issue completion superscalar
in-order completion out-of-order issue true data dependency
instruction issue output dependency write-read dependency
instruction-level parallelism procedural dependency write-write
instruction window read-write dependency dependency

Review Questions

14.1 What is the essential characteristic of the superscalar approach to processor design?

14.2 What is the difference between the superscalar and superpipelined approaches?
143 What is instruction-level parallelism?

14.4 Briefly define the following terms:
¢ True data dependency

Procedural dependency

Resource conflicts

Output dependency

Antidependency

14.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 531

14.5 What is the distinction between instruction-level parallelism and machine parallelism?

14.6 List and briefly define three types of superscalar instruction issue policies.

14.7 What is the purpose of an instruction window?

14.8 What is register renaming and what is its purpose?

149 What are the key elements of a superscalar processor organization?

Problems

14.1 When out-of-order completion is used in a superscalar processor, resumption of
execution after interrupt processing is complicated, because the exceptional condi-
tion may have been detected as an instruction that produced its result out of order.
The program cannot be restarted at the instruction following the exceptional instruc-
tion, because subsequent instructions have already completed, and doing so would
cause these instructions to be executed twice. Suggest a mechanism or mechanisms
for dealing with this situation.

14.2 Consider the following sequence of instructions, where the syntax consists of an

opcode followed by the destination register followed by one or two source registers:

0 ADD R3, R1, R2
1 LOAD R6, [R3]

2 AND R7, R5, 3
3 ADD R1, R6, RO
4 SRL R7, RO, 8
5 OR R2, R4, R7
6 SUB R5, R3, R4
7 ADD RO, R1, R10
8 LOAD R6, [R5]

9 SUB R2, R1, R6
10 AND R3, R7, 15

Assume the use of a four-stage pipeline: fetch, decode/issue, execute, write back.
Assume that all pipeline stages take one clock cycle except for the execute stage. For
simple integer arithmetic and logical instructions, the execute stage takes one cycle,
but for a LOAD from memory, five cycles are consumed in the execute stage.

If we have a simple scalar pipeline but allow out-of-order execution, we can
construct the following table for the execution of the first seven instructions:

Instruction Fetch Decode Execute Write Back

0 0 1
1 1 2
2 2 3
3 3 4 10 11
4 4 5 7
5 5 6 10
6 6 7 12

The entries under the four pipeline stages indicate the clock cycle at which each
instruction begins each phase. In this program, the second ADD instruction (instruc-
tion 3) depends on the LOAD instruction (instruction 1) for one of its operands, rm.
Because the LOAD instruction takes five clock cycles, and the issue logic encounters
the dependent ADD instruction after two clocks, the issue logic must delay the ADD

532 CHAPTER 14 / INSTRUCTION-LEVEL PARALLELISM

14.3

14.4

14.5

14.6

instruction for three clock cycles. With an out-of-order capability, the processor can

stall instruction 3 at clock cycle 4, and then move on to issue the following three inde-

pendent instructions, which enter execution at clocks 6, 8, and 9. The LOAD finishes

execution at clock 9, and so the dependent ADD can be launched into execution on

clock 10.

a. Complete the preceding table.

b. Redo the table assuming no out-of-order capability. What is the savings using the
capability?

¢. Redo the table assuming a superscalar implementation that can handle two
instructions at a time at each stage.

In the instruction queue in the dispatch unit of the PowerPC 601, instructions may be
dispatched out of order to the branch processing and floating-point units, but instruc-
tions intended for the integer unit must be dispatched only from the bottom of the
queue. Why this limitation?

Produce a figure similar to Figure 14.14 for the following cases:

a. Branch prediction: taken; correct prediction: branch was taken

b. Branch prediction: taken; incorrect prediction: branch was not taken

Consider the following assembly language program:

I1: Move R3, R7 /R3 & (R7)/

I2: Load R8, (R3) /R8 & Memory (R3)/

I3: Add R3, R3, 4 /R3 ¢ (R3) + 4/

I4: Load R9, (R3) /R9 ¢ Memory (R3)/

I5: BLE R8, R9, L3 /Branch if (R9) > (R8)/

This program includes write-write, read-write, and write-read dependencies. Show
these.

Figure 14.15 shows an example of a superscalar processor organization. The
processor can issue two instructions per cycle if there is no resource conflict and no
data dependence problem. There are essentially two pipelines, with four processing
stages (fetch, decode, execute, and store). Each pipeline has its own fetch decode
and store unit. Four functional units (multiplier, adder, logic unit, and load unit)
are available for use in the execute stage and are shared by the two pipelines on a
dynamic basis. The two store units can be dynamically used by the two pipelines,

Fetch | Decode | Execute stage . Store |
stage | stage | - | (write |
Multipl
| e | back) |
! ! ml|m2|m3 ! !
TP L |
> f1 [dl Adder] s1 (7 >
| 1 P I
: : - al | a2 | :
| : > ? l
> 2 > d2 i Logic |)
| | o | i
' : — el : I
I - L |
> | Ly |
;3] |a3| Load =2
| > | |
Lookahead Wind —>
,00Kahea ndaow i :: e2 i E
I | I

Figure 14.15 A Dual-Pipeline Superscalar Processor

14.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 533

depending on availability at a particular cycle. There is a lookahead window with
its own fetch and decoding logic. This window is used for instruction lookahead for
out-of-order instruction issue.

Consider the following program to be executed on this processor:

Il: Load R1, A /R1 Memory (A)/

I2: Add R2, R1 /R2 ¢ (R2) + R{(1)/
I3: Add R3, R4 /R3 ¢ (R3) + R(4)/
I4: Mul R4, RS /R4 & (R4) + R(5)/
I5: Comp R6 /R6 ¢ (R6)/

I6: Mul R6, R7 /R3 € (R3) + R(4)/

a. What dependencies exist in the program?

b. Show the pipeline activity for this program on the processor of Figure 14.15 using
in-order issue with in-order completion policies and using a presentation similar
to Figure 14.2.

¢. Repeat for in-order issue with out-of-order completion.

d. Repeat for out-of-order issue with out-of-order completion.

147 Figure 14.16 is from a paper on superscalar design. Explain the three parts of the figure,
and define w, X, y,and z.

14.8 Yeh’s dynamic branch prediction algorithm, used on the Pentium 4, is a two-level
branch prediction algorithm. The first level is the history of the last n branches. The
second level is the branch behavior of the last s occurrences of that unique pattern of
the last n branches. It is implemented as possible. For each conditional branch
instruction in a program, there is an entry in a Branch History Table (BHT). Each
entry consists of n bits corresponding to the last n executions of the branch instruc-
tion, with a 1 if the branch was taken and a 0 if the branch was not. Each BHT
entry indexes into a Pattern Table (PT) that has 2n entries, one for each possible pat-
tern of n bits. Each PT entry consists of s bits that are used in branch prediction, as
was described in Chapter 12 (e.g., Figure 12.17). When a conditional branch is
encountered during instruction fetch and decode, the address of the instruction is
used to retrieve the appropriate BHT entry, which shows the recent history of the
instruction. Then, the BHT entry is used to retrieve the appropriate PT entry for

From w —-- Tox,y,z — 1 1] To x
(a)

Fromw——[[[}—> Toy

— I }F— m:

(b)

— [T Tox

——ee

Toy
Fromw——>| l | l
Toz
g
(©)

Figure 14.16 Figure for Problem 14.7

536 CHAPTER 15/ THE IA-64 ARCHITECTURE

KEY POINTS

IA-64 mstrtmion set ardntecture is a new appmach to provndmg -
rdware support for instruction-level parallelism and is significantly dif-
ferent that the approach taken in superscalar architectures.

: ’nm most. noteworthy features of the IA-64 architecture are hardware
lcated execunon control speculatnon, data specuianon,

’ted execution, every IA-64 instruction includes a refer-
: 'ence to a 1-bit predicate register, and only executes if the predicate
value is 1 (true). This enables the processor to speculatively execute
both branches of an 1f statement and only commit after the condition is
determined.
& With centrol speculation, a load instruction is moved earlier in the pro-
* gram and its original position replaced by a check instruction. The early -
~ load saves cycle time; if the load produces an exception, the exception is
“not activated until the check mstmctlon determines if the load should
: have been taken. -
< With M‘spemhﬁon, a load is moved before a store instruction that
-~ might alter the memory location that is the source of the load. A subse-

: quent check is made to assure that the load receives the _proper memory
value. :

R 4 Sonwme pipelining is a technique in which instructions from multiple
- iterations of a loop are enabled to execute in parallel..

With the Pentium 4, the microprocessor family that began with the 8086 and that
has been the most successful computer product line ever appears to have come
to an end. Intel has teamed up with Hewlett-Packard (HP) to develop a new
64-bit architecture, called IA-64. IA-64 is not a 64-bit extension of Intel’s 32-bit
x86 architecture, nor is it an adaptation of Hewlett-Packard’s 64-bit PA-RISC
architecture. Instead, IA-64 is a new architecture that builds on years of research
at the two companies and at universities. The architecture exploits the vast
circuitry and high speeds available on the newest generations of microchips by
a systematic use of parallelism. IA-64 architecture represents a significant depar-
ture from the trend to superscalar schemes that have dominated recent processor
development.

We begin this chapter with a discussion of the motivating factors for the new
architecture. Next, we look at the general organization to support the architecture.
We then examine in some detail the key features of the IA-64 architecture that
promote instruction-level parallelism. Finally, we look at the IA-64 instruction set
architecture and the Itanium organization.

15.1 / MOTIVATION 537

15.1 MOTIVATION

The basic concepts underlying I1A-64 are as follows:

* Instruction-level parallelism that is explicit in the machine instructions rather
than being determined at run time by the processor

* Long or very long instruction words (LIW/VLIW)
* Branch predication (not the same thing as branch prediction)
¢ Speculative loading

Intel and HP refer to this combination of concepts as explicitly parallel
instruction computing (EPIC). Intel and HP use the term EPIC to refer to the tech-
nology, or collection of techniques. IA-64 is an actual instruction set architecture
that is intended for implementation using the EPIC technology. The first Intel prod-
uct based on this architecture is referred to as Itanium. Other products will follow,
based on the same 1A-64 architecture.

Table 15.1 summarizes key differences between, IA-64 and a traditional super-
scalar approach.

For Intel, the move to a new architecture that is not hardware compatible with
the x86 instruction architecture, was a momentous decision. But it was driven by the
dictates of the technology. When the x86 family began, back in the late 1970s,
the processor chip had tens of thousands of transistors and was an essentially scalar
device. That is, instructions were processed one at a time, with little or no pipelining. As
the number of transistors increased into the hundreds of thousands in the mid-1980s,
Intel introduced pipelining (e.g., Figure 12.19). Meanwhile, other manufacturers were
attempting to take advantage of the increased transistor count and increased speed
by means of the RISC approach, which enabled more effective pipelining, and later
the superscalar/RISC combination, which involved multiple execution units. With the
Pentium, Intel made a modest attempt to use superscalar techniques, allowing
two CISC instructions to execute at a time. Then, the Pentium Pro and Pentium II
through Pentium 4 incorporated a mapping from CISC instructions to RISC-like
micro-operations and the more aggressive use of superscalar techniques. This approach

Table 15.1 Traditional Superscalar versus [A-64 Architecture

3 LS R ”«*Lf fad i m fis:
ol thige b wa i

538 CHAPTER 15 / THE [A-64 ARCHITECTURE

enabled the effective use of a chip with millions of transistors. But for the next genera-
tion processor, the one beyond Pentium, Intel and other manufacturers are faced with
the need to use effectively tens of millions of transistors on a single processor chip.

Processor designers have few choices in how to use this glut of transistors. One
approach is to dump those extra transistors into bigger on-chip caches. Bigger
caches can improve performance to a degree but eventually reach a point of dimin-
ishing returns, in which larger caches result in tiny improvements in hit rates.
Another approach is to provide for multiple processors on a single chip. This
approach is discussed in Chapters 2 and 16. Yet another alternative is to increase the
degree of superscaling by adding more execution units. The problem with this
approach is that designers are, in effect, hitting a complexity wall. As more and more
execution units are added, making the processor “wider,” more logic is needed to
orchestrate these units. Branch prediction must be improved, out-of-order process-
ing must be used, and longer pipelines must be employed. But with more and longer
pipelines, there is a greater penalty for misprediction. Out-of-order execution
requires a large number of renaming registers and complex interlock circuitry to
account for dependencies. As a result, today’s best processors can manage at most to
retire six instructions per cycle, and usually less.

To address these problems, Intel and HP have come up with an overall design

approach that enables the effective use of a processor with many parallel execution
units. The heart of this new approach is the concept of explicit parallelism. With this
approach, the compiler statically schedules the instructions at compile time, rather
‘than having the processor dynamically schedule them at run time. The compiler
determines which instructions can execute in parallel and includes this information
with the machine instruction. The processor uses this information.to perform paral-
lel execution. One advantage of this approach is that the EPIC processor does not
need as much complex circuitry as an out-of-order superscalar processor. Further,
whereas the processor has only a matter of nanoseconds to determine potential par-
allel execution opportunities, the compiler has orders of magnitude more time to
examine the code at leisure and see the program as a whole.

15.2 GENERAL ORGANIZATION

As with any processor architecture, IA-64 can be implemented in a variety of orga-
nizations. Figure 15.1 suggests in general terms the organization of an 1A-64
machine. The key features are as follows:

* Large number of registers: The IA-64 instruction format assumes the use of
256 registers: 128 64-bit registers for integer, logical, and general-purpose
use, and 128 82-bit registers for floating-point and graphic use. There are
also 64 1-bit predicate registers used for predicated execution, as explained
subsequently.

* Multiple execution units: A typical commercial superscalar machine today may
support four parallel pipelines, using four parallel execution units in both the
integer and floating-point portions of the processor. It is expected that IA-64
will be implemented on systems with eight or more parallel units.

15.2 / GENERAL ORGANIZATION 539

| o128 i
"1 GRs EU e e

1 Y

64
PRs

<mOZmZ

o 128
FRs EU

)

GR = General-purpose or integer register
FR = Floating-point or graphics register
PR = One-bit predicate register

EU = Execution unit

Figure 15.1 General Organization for [A-64
Architecture

The register file is quite large compared with most RISC and superscalar
machines. The reason for this is that a large number of registers is needed to support
a high degree of parallelism. In a traditional superscalar machine, the machine
language (and the assembly language) employs a small number of visible registers,
and the processor maps these onto a larger number of registers using register
renaming techniques and dependency analysis. Because we wish to make parallelism
explicit and relieve the processor of the burden of register renaming and dependency
analysis, we need a large number of explicit registers.

The number of execution units is a function of the number of transistors avail-
able in a particular implementation. The processor will exploit parallelism to the
extent that it can. For example, if the machine language instruction stream indicates
that eight integer instructions may be executed in parallel, a processor with four
integer pipelines will execute these in two chunks. A processor with eight pipelines
will execute all eight instructions simultaneously.

Four types of execution unit are defined in the IA-64 architecture:

* I-unit: For integer arithmetic, shift-and-add, logical, compare, and integer mul-
timedia instructions

* M-unit: Load and store between register and memory plus some integer
ALU operations

e B-unit: Branch instructions
¢ F-unit: Floating-point instructions

Each 1A-64 instruction is categorized into one of six types. Table 15.2 lists the
instruction types and the execution unit types on which they may be executed. The
extended (X) instruction type includes instructions in which two slots in a bundle are
used to encode the instruction, allowing for more information than fits into a 41-bit
instruction (slots and bundles are explained in the next section).

540 CHAPTER 15 / THE 1A-64 ARCHITECTURE

Table 15.2 Relationship between Instruction Type
and Execution Unit Type

S Gk T htegerALU L-unit or M-unit
I

v ; M-unit

% 1 Lunit/B-unit

15.3 PREDICATION, SPECULATION, AND SOFTWARE PIPELINING

This section looks at the key features of the IA-64 architecture that support instruc-
tion-level parallelism. First, we need to provide an overview of the IA-64 instruction
format and, to support the examples in this section, define the general format of IA-64
assembly language instructions.

Instruction Format

IA-64 defines a 128-bit bundle that contains three instructions, called syllables,
and a template field (Figure 15.2a). The processor can fetch instructions one
or more bundles at a time; each bundle fetch brings in three instructions. The

- 128-bit bundle

Instruction siot 2 Instroctionslot] Instraction slot 0 :;T;
’ 41 41 41 5
(a) IA-64 bundle
41-bit instruction >
' Major
opcode ' PR
4 31 6
(b) General IA-64 instruction format
Major | (ther modifying bits GR3 GR2 GRI | PR
opcode
4 10 7 7 7 6

(c) Typical IA-64 instruction jormat

PR = Predicate register
GR = General or floating-point register

Figure 15.2 1A-64 Instruction Format

15.3 / PREDICATION, SPECULATION, AND SOFTWARE PIPELINING 541

template field contains information that indicates which instructions can be exe-
cuted in parallel. The interpretation of the template field is not confined to a sin-
gle bundle. Rather, the processor can look at multiple bundles to determine which
instructions may be executed in parallel. For example, the instruction stream may
be such that eight instructions can be executed in parallel. The compiler will
reorder instructions so that these eight instructions span contiguous bundles and
set the template bits so that the processor knows that these eight instructions are
independent.

The bundled instructions do not have to be in the original program order. Fur-
ther, because of the flexibility of the template field, the compiler can mix independent
and dependent instructions in the same bundle. Unlike some previous VLIW designs,
IA-64 does not need to insert null-operation (NOP) instructions to fill in the bundles.

Table 15.3 shows the interpretation of the possible values for the 5-bit
template field (some values are reserved and not in current use). The template value
accomplishes two purposes:

Table 15.3 Template Field Encoding and
Instruction Set Mapping

Template | Slot0 Jr Slot1 | Slot2
00 M-unit I-unit I-unit
o1 M-unit * ° Tumit .} Teunit

K2 __ Monit_ | Tumt § Tunit
G Mounit | uie | umit
04 Meunit | Lusit. | Xaunit
05 Manit | Lusit | X-unit
08 M-unit M-unit Tounit
09 TMaumit | Mot | T
0A | M-unit

0B | M-unit

00 T Wwmit |
1 Manit |

2 Mamit

16 | Bumit |
7 Bunit | Bunit |
S8 . Mownit | Musit | Boumit |
19 M-unit | M'ulﬁ) B-unit
1€ .| Mounit | Funit | “B-unit
D | Mumt | Famt | B-unit

542 CHAPTER 15 / THE IA-64 ARCHITECTURE

1. The field specifies the mapping of instruction slots to execution unit types. Not
all possible mappings of instructions to units are available.

2. The field indicates the presence of any stops. A stop indicates to the hardware
that one or more instructions before the stop may have certain kinds of
resource dependencies with one or more instructions after the stop. In the
table, a heavy vertical line indicates a stop.

Each instruction has a fixed-length 41-bit format (Figure 15.2b). This is some-
what longer than the traditional 32-bit length found on RISC and RISC superscalar
machines (although it is much shorter than the 118-bit micro-operation of the Pen-
tium 4). Two factors lead to the additional bits. First, [A-64 makes use of more regis-
ters than a typical RISC machine: 128 integer and 128 floating-point registers. Second,
to accommodate the predicated execution technique, an 1A-64 machine includes 64
predicate registers. Their use is explained subsequently.

Figure 15.2¢c shows in more detail the typical instruction format. All instruc-
tions include a 4-bit major opcode and a reference to a predicate register. Although
the major opcode field can only discriminate among 16 possibilities, the interpreta-
tion of the major opcode field depends on the template value and the location of the
instruction within a bundle (Table 15.3), thus affording more possible opcodes. Typ-
ical instructions also include three fields to reference registers, leaving 10 bits for
other information needed to fully specify the instruction.

Assembly-Language Format

As with any machine instruction set, an assembly language is provided for the con-
venience of the programmer. The assembler or compiler then translates each assem-
bly language instruction into a 41-bit 1A-64 instruction. The general format of an
assembly language instruction is

[gp] mnemonic|.comp] dest = srcs
where

qp Specifies a 1-bit predicate register used to qualify the instruction. If the
value of the register is 1 (true) at execution time, the instruction exe-
cutes and the result is committed in hardware. If the value is false, the
result of the instruction is not committed but is discarded. Most 1A-64
instructions may be qualified by a predicate but need not be. To account
for an instruction that is not predicated, the qp value is set to 0 and
predicate register zero always has the constant value of 1.

mnemonic Specifies the name of an IA-64 instruction.

comp Specifies one or more instruction completers, separated by periods,
which are used to qualify the - mnemonic. Not all instructions require
the use of a completer.

dest Specifies one or more destination operands, with the typical case being
a single destination.

srcs Specifies one or more source operands. Most instructions have two or
more source operands.

15.3 / PREDICATION, SPECULATION, AND SOFTWARE PIPELINING 543

On any line, any characters to the right of a double slash “//” are treated as a
comment. Instruction groups and stops are indicated by a double semicolon “3”.An
instruction group is defined as a sequence of instructions that have no read after
write or write after write dependencies. The processor can issue these without hard-
ware checks for register dependencies. Here is a simple example:

1d8 r1 = [r5] ;; // First group
add r3 = rl, r4 // .Second group

The first instruction reads an 8-byte value from the memory location whose
address is in register r5 and then places that value in register rl. The second instruc-
tion adds the contents of r1 and r4 and places the result in r3. Because the second in-
struction depends on the value in rl, which is changed by the first instruction, the
two instructions cannot be in the same group for parallel execution.

Here is a more complex example, with multiple register flow dependencies:

1d8 r1 = [r5] // First group
sub r6 = r8, r9 ;; // First group
add r3 = ri1, r4 // Second group
st8 [r6] = rl2 // Second group

The last instruction stores the contents of 12 in the memory location whose
address is in r6.

We are now ready to look at the four key mechanisms in the 1A-64 architec-
ture to support instruction-level parallelism:

* Predication

* Control speculation
¢ Data speculation

* Software pipelining

Figure 15.3, based on a figure in [HALF97], illustrates the first two of these tech-
niques, which are discussed in this subsection and the next.

Predicated Execution

Predication is a technique whereby the compiler determines which instructions may
execute in parallel. In the process, the compiler eliminates branches from the pro-
gram by using conditional execution. A typical example in a high-level language is
an if-then-else instruction. A traditional compiler inserts a conditional branch at the
if point of this construct. If the condition has one logical outcome, the branch is not
taken and the next block of instructions is executed, representing the then path; at
the end of this path is an unconditional branch around the next block, representing
the else path. If the condition has the other logical outcome, the branch is taken
around the then block of instructions and execution continues at the else block of
instructions. The two instruction streams join together after the end of the else
block. An IA-64 compiler instead does the following (Figure 15.3a):

(€21
6 uondInIsuy

(zd) Y9
aapemoads

(eyep peoy)
§ uondnISUf

@d)
L uoganusuy

Surpeoj sanemoads (q)

‘uondaoxa ue podar

10U $30p NJD !

MO st BiEp oy

Jo Aupiyea ay3 syo9yd
«— UONONNSUI SIYL ‘¢

ad)
9 uonPNISUY

‘wre13oid ayy ur readde
™~ A][eMIoE JoUu S0P
g uononnsut 0s ‘2A0qe
peo] aAne[naads ayl

yam peoj siy) pasejdas ad
Jondwod ayJ, ¢

‘youeiq 9y} sA0Qe
peoj ay) paisioy sey
¥9-VI ‘10933 uf °¢

‘uondaoxa ayy \\

Sunodas ssuodisod NdD
oy ‘uondaoxa ue 1033
pInoMm peo[dy1 J] ‘PapaIsu
S111210jaq AJOWSW Wolj
BIEp 3y} SPLO| UOTdNNSUL

‘(6 uononnsur) eyep ay)
asn (s Jeyl uonesado ay)
3Anemads | a10joq ApereIpatuL Yoy

~~ sanenoads € pue 10y
z voponsiu]

peoj aanendads e suasul
‘peO[3Y) S2A0WI 1] (8
uononsur) peof urwoddn
UE $23S PUB 9pOJ 0IN0OS
ayy sueds 1ajidwod ay [, ‘|

SIY) ‘W) Un1 1y '

Suipeo aanenoadg pue uonedpaid $9-vI

¢S] 23y

uonealpal] ()

_ 6 uoponusuyf9 ﬁouusbm:—_ 8 Eﬁos.:,m.ﬁ

[uonsnnysuy|, uopannsuy |y uoponnsuy |

| € wononysuy |z wopanasu | | uoponysuy |

‘uoundaxa [a[jesed I0j 6 pue 9 pue ‘g pue ¢ ‘/ PUe { SUONONIISUT
Suuned ‘1apio syl ut suononnsut dfuerreas S Joqidwod ayj,

@

6 uopdnI}sUY

@D

8 uoponnsuy

t2 1

L uogdnaysuy

‘yred pijeAur wWolj sNsal
SPIEdSIp 11 “auIodino aredwod (Id

ay) smouy NdD USYM L 9 uonaAxSUy
"sarouapuadap
[eninw ou dAey A3y} (1d)
~<— asneosaq [of[ered ur syped M § UORINLSUY
JUDISIP WO SUOLINSUT
\ aIndaxa ued 14D 9
ad
‘syted yi0q wWoij suondmisul p uononISUY

unnoaxa surdaq NdD 'S

19181321 9yeorpaid 01
jutod yyed styy Suore
suononnsul [y ,w\

‘yied s31 0y Jurpooor
‘uononnsul SuImof|o)
yoea 03 181801 Awo1paid
e sugisse Ja11dwod 3y], 7

/

/ ‘Id
19181321 SedIpad 0
urod yred sy Suore

4/w=o_.~o=.=m=_ [v'e
nysuy

‘sawodno ajqissod
om) sey youeiq Y ‘|

‘ud
(yousiq)
€ uondNISuy

544

15.3 7/ PREDICATION, SPECULATION, AND SOFTWARE PIPELINING 545

At the if point in the program, insert a compare instruction that creates two
predicates. If the compare is true, the first predicate is set to true and the
second to false; if the compare is false, the first predicate is set to false and the
second to true.

Augment each instruction in the then path with a reference to a predicate reg-
ister that holds the value of the first predicate, and augment each instruction in
the else path with a reference to a predicate register that holds the value of the
second predicate.

- The processor executes instructions along both paths. When the outcome of

the compare is known, the processor discards the results along one path and
commits the results along the other path. This enables the processor to feed
instructions on both paths into the instruction pipeline without waiting for the
compare operation to complete,

As an example, consider the following source code:

if (a&&b)
=3+ 1;
else
Source Code: if (o)
k =k + 1;
else
k =k - 1;
1 =1 + 1;

Two if statements jointly select one of three possible execution paths. This can

be compiled into the following code, using the Pentium assembly language. The pro-
gram has three conditional branches and one unconditional branch instructions:

cmp a, 0 ; compare a with 0
je L1 i branch to L1 if a = 0
cmp b, 0
je Ll
add j, 1 ;o0 J =3+ 1
Assembly Code jmp - L3
Ll: cmp ¢, 0
je L2
add k, 1 ik =k +1
jmp L3
L2: sub k, 1 ;7 k =k -1

L3: add i, 1 ; i=1i4+1

In the Pentium assembly language, a semicolon is used to delimit a comment.
Figure 15.4 shows a flow diagram of this assembly code. This diagram

breaks the assembly language program into separate blocks of code. For each

546 CHAPTER 15/ THE 1A-64 ARCHITECTURE

Figure 15.4 Example of Predication

block that executes conditionally, the compiler can assign a predicate. These
predicates are indicated in Figure 15.4. Assuming that all of these
predicates have been initialized to false, the resulting IA-64 assembly code is as

follows:

add

add
add

(
(
(
Predicated Code: (
(
(
(add

N oY U W N

)
)
)
)
)
)
)

cmp .
cmp.

(p2)
(p3)
(pl) cmp.
(p4d)
(p5)

eq pl,
eq pl,
j =1,
ne p4,
k=1,
k= -1,
i=1,

i

k

1

Instruction (1) compares the contents of symbolic register a with 0; it sets the
value of predicate register p1 to 1 (true) and p2 to O (false) if the relation is true and
will set the value of predicate pl to 0 and p2 to 1 if the relation is false. Instruction
(2) is to be executed only if the predicate p2 is true (i.e., if a is true, which is equiva-
lent to a # 0). The processor will fetch, decode, and begin executing this instruction,
but only make a decision as to whether to commit the result after it determines
whether the value of predicate register pl is 1 or 0. Note that instruction (2) is a
predicate-generating instruction and is itself predicated. This instruction requires

three predicate register fields in its format.

15.3 / PREDICATION, SPECULATION. AND SOFTWARE PIPELINING 547

Returning to our Pentium program, the first two conditional branches in the
Pentium assembly code are translated into two IA-64 predicated compare
instructions. If instruction (1) sets p2 to false, the instruction (2) is not executed.
After instruction (2) in the [A-64 program, p3 is true only if the outer if statement
in the source code is true. That is, predicate p3 is true only if the expression
(a AND b) is true (i.e.,a # 0 AND b # 0). The then part of the outer if statement
is predicated on p3 for this reason. Instruction (4) of the IA-64 code decides
whether the addition or subtraction instruction in the outer else part is performed.
Finally, the increment of i is performed unconditionally. Looking at the source
code and then at the predicated code, we see that only one of instructions 3),(5),
and (6) is to be executed. In an ordinary superscalar processor, we would use
branch prediction to guess which of the three is to be executed and go down that
path. If the processor guesses wrong, the pipeline must be flushed. An [A-64
processor can begin execution of all three of these instructions and, once the
values of the predicate registers are known, commit only the results of the valid
instruction. Thus, we make use of additional parallel execution units to avoid the
delays due to pipeline flushing.

Much of the original research on predicated execution was done at the Uni-
versity of Illinois. Their simulation studies indicate that the use of predication results
in a substantial reduction in dynamic branches and branch mispredictions and a sub-
stantial performance improvement for processors with multiple parallel pipelines
(e.g.,[MAHL9%4], [MAHLY5)).

Control Speculation

Another key innovation in IA-64 is control speculation, also known as speculative
loading. This enables the processor to load data from memory before the program
needs it, to avoid memory latency delays. Also, the processor postpones the report-
ing of exceptions until it becomes necessary to report the exception. The term hoist
is used to refer to the movement of a load instruction to a point earlier in the
instruction stream.

The minimization of load latencies is crucial to improving performance.
Typically, early in a block of code, there are a number of load operations that
bring data from memory to registers. Because memory, even augmented with
one or two levels of cache, is slow compared with the processor, the delays in
obtaining data from memory become a bottleneck. To minimize this, we would
like to rearrange the code so that loads are done as early as possible. This can be
done with any compiler, up to a point. The problem occurs if we attempt to move
a load across a control flow. You cannot unconditionally move the load above a
branch because the load may not actually occur. We could move the load condi-
tionally, using predicates, so that the data could be retrieved from memory
but not committed to an architectural register until the outcome of the predicate
is known; or we can use branch prediction techniques of the type we saw
in Chapter 14. The problem with this strategy is that the load can blow up. An
exception due to invalid address or a page fault could be generated. If this
happens, the processor would have to deal with the exception or fault, causing
a delay.

548 CHAPTER 15 / THE IA-64 ARCHITECTURE

How then, can we move the load above the branch? The solution specified in
IA-64 is the control speculation, which separates the load behavior (delivering the
value) from the exception behavior (Figure 15.3b). A load instruction in the original
program is replaced by two instructions:

¢ A speculative load (ld.s) executes the memory fetch, performs exception
detection, but does not deliver the exception (call the OS routine that handles
the exception). This 1d.s instruction is hoisted to an appropriate point earlier in
the program.

» A checking instruction (chk.s) remains in the place of the original load and
delivers exceptions. This chk.s instruction may be predicated so that it will only
execute if the predicate is true.

If the 1d.s detects an exception, it sets a token bit associated with the target
register, known as the Not a Thing (NaT) bit. If the corresponding chk.s instruction
is executed, and if the NaT bit is set, the chk.s instruction branches to an exception-
handling routine.

Let us look at a simple example, taken from [INTEOOa, Volume 1]. Here is the
original program:

(pl) Dbr some_label // Cycle 0
1d8 rl1 = [r5] ;; // Cycle 1
add r2 = rl1, r3 // Cycle 3

The first instruction branches if predicate p1 is true (register p1 has value 1). Note
that the branch and load instructions are in the same instruction group, even though
the load should not execute if the branch is taken. IA-64 guarantees that if a branch is
taken, later instructions, even in the same instruction group, are not executed. IA-64
implementations may use branch prediction to try to improve efficiency but must
assure against incorrect results. Finally, note that the add instruction is delayed by at
least a clock period (one cycle) due to the memory latency of the load operation.

The compiler can rewrite this code using a control speculative load and a check:

1d8.s rl = [r5] ;; // Cycle —2
// Other instructions

(pl) br some_label // Cycle 0
chk.s rl, recovery // Cycle 0
add r2 = ri, r3 // Cycle 0

We can’t simply move the load instruction above the branch instruction, as is,
because the load instruction may cause an exception (e.g., r5 may contain a null
pointer). Instead, we convert the load to a speculative load, 1d8.s, and then move it.
The speculative load doesn’t immediately signal an exception when detected; it just
records that fact by setting the NaT bit for the target register (in this case, r1). The
speculative load now executes unconditionally at least two cycles prior to the
branch. The chk.s instruction then checks to see if the NaT bit is set on rl. If not,
execution simply falls through to the next instruction. If so, a branch is taken to a

15.3 / PREDICATION, SPECULATION, AND SOFTWARE PIPELINING 549

recovery program. Note that the branch, check, and add instructions are all shown
as being executed in the same clock cycle. However, the hardware ensures that the
results produced by the speculative load do not update the application state (change
the contents of r1 and r2) unless two conditions occur: the branch is not taken
(p1 = 0) and the check does not detect a deferred exception (r1.NaT = 0).

There is one other important point to note about this example. If there is no
exception, then the speculative load is an actual load and takes place prior to the
branch that it is supposed to follow. If the branch is taken, then a load has occurred
that was not intended by the original program. The program, as written, assumes
that r1 is not read on the taken-branch path. If r1 is read on the taken-branch path,
then the compiler must use another register to hold the speculative result.

Let us look at a more complex example, used by Intel and HP to benchmark
predicated programs and to illustrate the use of speculative loads, known as the
Eight Queens Problem. The objective is to arrange eight queens on a chessboard so
that no queen threatens any other queen. Figure 15.5a shows one solution. The key
line of source code, in an inner loop, is the following:

if ((b[J] == true) && (ali + j] == true) &&
(cli - j] == true))

Ez
T| 3
T| 4
Tl 5
T] 6
T 7
T] 8
T 9 &
T{10 &
1 ﬁrll «
2 T 12
(a) One solution 3 T 13
4 1] 14
12345678 5 (T15
6 T] 16
7
8

12345678
(c) aarray

b array
(=B[=[=[=]=]=]=]4]
0 N NN B W N

(T[T T[T [T [T T[T [T[T[T]T[T]T]
=7-6-5-4-3-2-10 1 2 3 4 567
¢ array

(b) band ¢ arrays
Figure 15.5 The Eight Queens Problem

550 CHAPTER 15 / THE 1A-64 ARCHITECTURE

The queen conflict tracking mechanism consists of three Boolean arrays that
track queen status for each row and diagonal. TRUE means no queen is on that row
or diagonal; FALSE means a queen is already there. Figures 15.5b and ¢ show the
mapping of the arrays to the chess board. All array elements are initialized to TRUE.
The B array elements 1 through 8 correspond to rows 1 through 8 on the board. A
queen in row n sets b[n] to FALSE. C array elements are numbered from —7 to 7 and
correspond to the difference between column and row numbers, which defines the
diagonals that go down to the right. A queen at column 1, row 1 sets c[0] to FALSE.
A queen at column 1, row 8 sets c[—7] to FALSE. The A array elements are
numbered 2-16 and correspond to the sum of the column and row. A queen placed in
column 1, row 1 sets a[2] to FALSE. A queen placed in column 3, row S sets a[8]
to FALSE.

The overall program moves through the columns, placing a queen on each col-
umn such that the new queen is not attacked by a queen previously placed on either
along a row or one of the two diagonals.

A straightforward Pentium assembly program includes three loads and
three branches:

(1) mov r2, &blj] ; transfer contents
; of location
; blj] to register r2

(2) cmp rz2, 1

(3) jne L2

(4) mov r4, &afli + j]
Assembly Code: (5) C,mp rd, 1

(6) jne L2

(7) mov r6, &cl[i - 3]

(8) cmp r6, 1

(9) jne L2

(10) Ll: <code for then path>

(11) L2: <code for else path>

In the preceding program, the notation &x symbolizes an immediate address for
location x.
Using speculative loads and predicated execution yields the following:

Code with (1) mov rl = &b[j] // transfer address of
Speculation and // bli] to ril
Predication: (2) mov r3 = &ali + 3j]

(3) mov r5 = &cl(i - j + 7]

(4) 1d8 r2 = [rl] // load indirect via rl

(5) 1d8.s r4 = {r3]

(6) 1d8.s r6 = [r5]

(7) cmp.eq pl, p2 =1, r2

(8) (p2) br L2

